3.342 \(\int (-a+b \tan (c+d x)) \sqrt {a+b \tan (c+d x)} \, dx\)

Optimal. Leaf size=422 \[ \frac {b \sqrt {a^2+b^2} \log \left (-\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a} \sqrt {a+b \tan (c+d x)}+\sqrt {a^2+b^2}+a+b \tan (c+d x)\right )}{2 \sqrt {2} d \sqrt {\sqrt {a^2+b^2}+a}}-\frac {b \sqrt {a^2+b^2} \log \left (\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a} \sqrt {a+b \tan (c+d x)}+\sqrt {a^2+b^2}+a+b \tan (c+d x)\right )}{2 \sqrt {2} d \sqrt {\sqrt {a^2+b^2}+a}}-\frac {b \sqrt {a^2+b^2} \tanh ^{-1}\left (\frac {\sqrt {\sqrt {a^2+b^2}+a}-\sqrt {2} \sqrt {a+b \tan (c+d x)}}{\sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {2} d \sqrt {a-\sqrt {a^2+b^2}}}+\frac {b \sqrt {a^2+b^2} \tanh ^{-1}\left (\frac {\sqrt {\sqrt {a^2+b^2}+a}+\sqrt {2} \sqrt {a+b \tan (c+d x)}}{\sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {2} d \sqrt {a-\sqrt {a^2+b^2}}}+\frac {2 b \sqrt {a+b \tan (c+d x)}}{d} \]

[Out]

-1/2*b*arctanh(((a+(a^2+b^2)^(1/2))^(1/2)-2^(1/2)*(a+b*tan(d*x+c))^(1/2))/(a-(a^2+b^2)^(1/2))^(1/2))*(a^2+b^2)
^(1/2)/d*2^(1/2)/(a-(a^2+b^2)^(1/2))^(1/2)+1/2*b*arctanh(((a+(a^2+b^2)^(1/2))^(1/2)+2^(1/2)*(a+b*tan(d*x+c))^(
1/2))/(a-(a^2+b^2)^(1/2))^(1/2))*(a^2+b^2)^(1/2)/d*2^(1/2)/(a-(a^2+b^2)^(1/2))^(1/2)+1/4*b*ln(a+(a^2+b^2)^(1/2
)-2^(1/2)*(a+(a^2+b^2)^(1/2))^(1/2)*(a+b*tan(d*x+c))^(1/2)+b*tan(d*x+c))*(a^2+b^2)^(1/2)/d*2^(1/2)/(a+(a^2+b^2
)^(1/2))^(1/2)-1/4*b*ln(a+(a^2+b^2)^(1/2)+2^(1/2)*(a+(a^2+b^2)^(1/2))^(1/2)*(a+b*tan(d*x+c))^(1/2)+b*tan(d*x+c
))*(a^2+b^2)^(1/2)/d*2^(1/2)/(a+(a^2+b^2)^(1/2))^(1/2)+2*b*(a+b*tan(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.39, antiderivative size = 422, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 9, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3528, 12, 3485, 708, 1094, 634, 618, 206, 628} \[ \frac {b \sqrt {a^2+b^2} \log \left (-\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a} \sqrt {a+b \tan (c+d x)}+\sqrt {a^2+b^2}+a+b \tan (c+d x)\right )}{2 \sqrt {2} d \sqrt {\sqrt {a^2+b^2}+a}}-\frac {b \sqrt {a^2+b^2} \log \left (\sqrt {2} \sqrt {\sqrt {a^2+b^2}+a} \sqrt {a+b \tan (c+d x)}+\sqrt {a^2+b^2}+a+b \tan (c+d x)\right )}{2 \sqrt {2} d \sqrt {\sqrt {a^2+b^2}+a}}-\frac {b \sqrt {a^2+b^2} \tanh ^{-1}\left (\frac {\sqrt {\sqrt {a^2+b^2}+a}-\sqrt {2} \sqrt {a+b \tan (c+d x)}}{\sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {2} d \sqrt {a-\sqrt {a^2+b^2}}}+\frac {b \sqrt {a^2+b^2} \tanh ^{-1}\left (\frac {\sqrt {\sqrt {a^2+b^2}+a}+\sqrt {2} \sqrt {a+b \tan (c+d x)}}{\sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {2} d \sqrt {a-\sqrt {a^2+b^2}}}+\frac {2 b \sqrt {a+b \tan (c+d x)}}{d} \]

Antiderivative was successfully verified.

[In]

Int[(-a + b*Tan[c + d*x])*Sqrt[a + b*Tan[c + d*x]],x]

[Out]

-((b*Sqrt[a^2 + b^2]*ArcTanh[(Sqrt[a + Sqrt[a^2 + b^2]] - Sqrt[2]*Sqrt[a + b*Tan[c + d*x]])/Sqrt[a - Sqrt[a^2
+ b^2]]])/(Sqrt[2]*Sqrt[a - Sqrt[a^2 + b^2]]*d)) + (b*Sqrt[a^2 + b^2]*ArcTanh[(Sqrt[a + Sqrt[a^2 + b^2]] + Sqr
t[2]*Sqrt[a + b*Tan[c + d*x]])/Sqrt[a - Sqrt[a^2 + b^2]]])/(Sqrt[2]*Sqrt[a - Sqrt[a^2 + b^2]]*d) + (b*Sqrt[a^2
 + b^2]*Log[a + Sqrt[a^2 + b^2] + b*Tan[c + d*x] - Sqrt[2]*Sqrt[a + Sqrt[a^2 + b^2]]*Sqrt[a + b*Tan[c + d*x]]]
)/(2*Sqrt[2]*Sqrt[a + Sqrt[a^2 + b^2]]*d) - (b*Sqrt[a^2 + b^2]*Log[a + Sqrt[a^2 + b^2] + b*Tan[c + d*x] + Sqrt
[2]*Sqrt[a + Sqrt[a^2 + b^2]]*Sqrt[a + b*Tan[c + d*x]]])/(2*Sqrt[2]*Sqrt[a + Sqrt[a^2 + b^2]]*d) + (2*b*Sqrt[a
 + b*Tan[c + d*x]])/d

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 708

Int[1/(Sqrt[(d_) + (e_.)*(x_)]*((a_) + (c_.)*(x_)^2)), x_Symbol] :> Dist[2*e, Subst[Int[1/(c*d^2 + a*e^2 - 2*c
*d*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0]

Rule 1094

Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(-1), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r = Rt[2*q - b/c, 2]}
, Dist[1/(2*c*q*r), Int[(r - x)/(q - r*x + x^2), x], x] + Dist[1/(2*c*q*r), Int[(r + x)/(q + r*x + x^2), x], x
]]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && NegQ[b^2 - 4*a*c]

Rule 3485

Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[(a + x)^n/(b^2 + x^2), x], x
, b*Tan[c + d*x]], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[a^2 + b^2, 0]

Rule 3528

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(d
*(a + b*Tan[e + f*x])^m)/(f*m), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rubi steps

\begin {align*} \int (-a+b \tan (c+d x)) \sqrt {a+b \tan (c+d x)} \, dx &=\frac {2 b \sqrt {a+b \tan (c+d x)}}{d}+\int \frac {-a^2-b^2}{\sqrt {a+b \tan (c+d x)}} \, dx\\ &=\frac {2 b \sqrt {a+b \tan (c+d x)}}{d}+\left (-a^2-b^2\right ) \int \frac {1}{\sqrt {a+b \tan (c+d x)}} \, dx\\ &=\frac {2 b \sqrt {a+b \tan (c+d x)}}{d}-\frac {\left (b \left (a^2+b^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a+x} \left (b^2+x^2\right )} \, dx,x,b \tan (c+d x)\right )}{d}\\ &=\frac {2 b \sqrt {a+b \tan (c+d x)}}{d}-\frac {\left (2 b \left (a^2+b^2\right )\right ) \operatorname {Subst}\left (\int \frac {1}{a^2+b^2-2 a x^2+x^4} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{d}\\ &=\frac {2 b \sqrt {a+b \tan (c+d x)}}{d}-\frac {\left (b \sqrt {a^2+b^2}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}}-x}{\sqrt {a^2+b^2}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} x+x^2} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} d}-\frac {\left (b \sqrt {a^2+b^2}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}}+x}{\sqrt {a^2+b^2}+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} x+x^2} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} d}\\ &=\frac {2 b \sqrt {a+b \tan (c+d x)}}{d}-\frac {\left (b \sqrt {a^2+b^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a^2+b^2}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} x+x^2} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{2 d}-\frac {\left (b \sqrt {a^2+b^2}\right ) \operatorname {Subst}\left (\int \frac {1}{\sqrt {a^2+b^2}+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} x+x^2} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{2 d}+\frac {\left (b \sqrt {a^2+b^2}\right ) \operatorname {Subst}\left (\int \frac {-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}}+2 x}{\sqrt {a^2+b^2}-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} x+x^2} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{2 \sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} d}-\frac {\left (b \sqrt {a^2+b^2}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}}+2 x}{\sqrt {a^2+b^2}+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} x+x^2} \, dx,x,\sqrt {a+b \tan (c+d x)}\right )}{2 \sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} d}\\ &=\frac {b \sqrt {a^2+b^2} \log \left (a+\sqrt {a^2+b^2}+b \tan (c+d x)-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}\right )}{2 \sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} d}-\frac {b \sqrt {a^2+b^2} \log \left (a+\sqrt {a^2+b^2}+b \tan (c+d x)+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}\right )}{2 \sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} d}+\frac {2 b \sqrt {a+b \tan (c+d x)}}{d}+\frac {\left (b \sqrt {a^2+b^2}\right ) \operatorname {Subst}\left (\int \frac {1}{2 \left (a-\sqrt {a^2+b^2}\right )-x^2} \, dx,x,-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}}+2 \sqrt {a+b \tan (c+d x)}\right )}{d}+\frac {\left (b \sqrt {a^2+b^2}\right ) \operatorname {Subst}\left (\int \frac {1}{2 \left (a-\sqrt {a^2+b^2}\right )-x^2} \, dx,x,\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}}+2 \sqrt {a+b \tan (c+d x)}\right )}{d}\\ &=-\frac {b \sqrt {a^2+b^2} \tanh ^{-1}\left (\frac {\sqrt {a+\sqrt {a^2+b^2}}-\sqrt {2} \sqrt {a+b \tan (c+d x)}}{\sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {2} \sqrt {a-\sqrt {a^2+b^2}} d}+\frac {b \sqrt {a^2+b^2} \tanh ^{-1}\left (\frac {\sqrt {a+\sqrt {a^2+b^2}}+\sqrt {2} \sqrt {a+b \tan (c+d x)}}{\sqrt {a-\sqrt {a^2+b^2}}}\right )}{\sqrt {2} \sqrt {a-\sqrt {a^2+b^2}} d}+\frac {b \sqrt {a^2+b^2} \log \left (a+\sqrt {a^2+b^2}+b \tan (c+d x)-\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}\right )}{2 \sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} d}-\frac {b \sqrt {a^2+b^2} \log \left (a+\sqrt {a^2+b^2}+b \tan (c+d x)+\sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} \sqrt {a+b \tan (c+d x)}\right )}{2 \sqrt {2} \sqrt {a+\sqrt {a^2+b^2}} d}+\frac {2 b \sqrt {a+b \tan (c+d x)}}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.25, size = 157, normalized size = 0.37 \[ \frac {\cos (c+d x) (a-b \tan (c+d x)) \left (2 b \sqrt {a+b \tan (c+d x)}+i \sqrt {a-i b} (a+i b) \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a-i b}}\right )-i (a-i b) \sqrt {a+i b} \tanh ^{-1}\left (\frac {\sqrt {a+b \tan (c+d x)}}{\sqrt {a+i b}}\right )\right )}{d (a \cos (c+d x)-b \sin (c+d x))} \]

Antiderivative was successfully verified.

[In]

Integrate[(-a + b*Tan[c + d*x])*Sqrt[a + b*Tan[c + d*x]],x]

[Out]

(Cos[c + d*x]*(a - b*Tan[c + d*x])*(I*Sqrt[a - I*b]*(a + I*b)*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]]
- I*(a - I*b)*Sqrt[a + I*b]*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a + I*b]] + 2*b*Sqrt[a + b*Tan[c + d*x]]))/(
d*(a*Cos[c + d*x] - b*Sin[c + d*x]))

________________________________________________________________________________________

fricas [B]  time = 0.91, size = 3055, normalized size = 7.24 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a+b*tan(d*x+c))*(a+b*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/4*(4*sqrt(2)*d^5*sqrt((a^4 + 2*a^2*b^2 + b^4 + a*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4))/(a^2*b^2
 + b^4))*((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)^(3/4)*sqrt((a^4*b^2 + 2*a^2*b^4 + b^6)/d^4)*arctan(-(sqrt(2
)*(a^4*b + 2*a^2*b^3 + b^5)*d^7*sqrt((a^4 + 2*a^2*b^2 + b^4 + a*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d
^4))/(a^2*b^2 + b^4))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6
)/d^4)^(5/4)*sqrt((a^4*b^2 + 2*a^2*b^4 + b^6)/d^4) - sqrt(2)*d^7*sqrt((a^4 + 2*a^2*b^2 + b^4 + a*d^2*sqrt((a^6
 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4))/(a^2*b^2 + b^4))*sqrt((sqrt(2)*(a^6*b^3 + 3*a^4*b^5 + 3*a^2*b^7 + b^9)*d
*sqrt((a^4 + 2*a^2*b^2 + b^4 + a*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4))/(a^2*b^2 + b^4))*sqrt((a*c
os(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)^(1/4)*cos(d*x + c) + (a^
6*b^2 + 3*a^4*b^4 + 3*a^2*b^6 + b^8)*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*cos(d*x + c) + (a^9*b^2
 + 4*a^7*b^4 + 6*a^5*b^6 + 4*a^3*b^8 + a*b^10)*cos(d*x + c) + (a^8*b^3 + 4*a^6*b^5 + 6*a^4*b^7 + 4*a^2*b^9 + b
^11)*sin(d*x + c))/cos(d*x + c))*((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)^(5/4)*sqrt((a^4*b^2 + 2*a^2*b^4 + b
^6)/d^4) + (a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^6 + 5*a^2*b^8 + b^10)*d^4*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b
^4 + b^6)/d^4)*sqrt((a^4*b^2 + 2*a^2*b^4 + b^6)/d^4) + (a^13 + 6*a^11*b^2 + 15*a^9*b^4 + 20*a^7*b^6 + 15*a^5*b
^8 + 6*a^3*b^10 + a*b^12)*d^2*sqrt((a^4*b^2 + 2*a^2*b^4 + b^6)/d^4))/(a^14*b^2 + 7*a^12*b^4 + 21*a^10*b^6 + 35
*a^8*b^8 + 35*a^6*b^10 + 21*a^4*b^12 + 7*a^2*b^14 + b^16)) + 4*sqrt(2)*d^5*sqrt((a^4 + 2*a^2*b^2 + b^4 + a*d^2
*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4))/(a^2*b^2 + b^4))*((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)^(3/
4)*sqrt((a^4*b^2 + 2*a^2*b^4 + b^6)/d^4)*arctan(-(sqrt(2)*(a^4*b + 2*a^2*b^3 + b^5)*d^7*sqrt((a^4 + 2*a^2*b^2
+ b^4 + a*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4))/(a^2*b^2 + b^4))*sqrt((a*cos(d*x + c) + b*sin(d*x
 + c))/cos(d*x + c))*((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)^(5/4)*sqrt((a^4*b^2 + 2*a^2*b^4 + b^6)/d^4) - s
qrt(2)*d^7*sqrt((a^4 + 2*a^2*b^2 + b^4 + a*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4))/(a^2*b^2 + b^4))
*sqrt(-(sqrt(2)*(a^6*b^3 + 3*a^4*b^5 + 3*a^2*b^7 + b^9)*d*sqrt((a^4 + 2*a^2*b^2 + b^4 + a*d^2*sqrt((a^6 + 3*a^
4*b^2 + 3*a^2*b^4 + b^6)/d^4))/(a^2*b^2 + b^4))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*((a^6 + 3
*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)^(1/4)*cos(d*x + c) - (a^6*b^2 + 3*a^4*b^4 + 3*a^2*b^6 + b^8)*d^2*sqrt((a^6 +
3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*cos(d*x + c) - (a^9*b^2 + 4*a^7*b^4 + 6*a^5*b^6 + 4*a^3*b^8 + a*b^10)*cos(d*
x + c) - (a^8*b^3 + 4*a^6*b^5 + 6*a^4*b^7 + 4*a^2*b^9 + b^11)*sin(d*x + c))/cos(d*x + c))*((a^6 + 3*a^4*b^2 +
3*a^2*b^4 + b^6)/d^4)^(5/4)*sqrt((a^4*b^2 + 2*a^2*b^4 + b^6)/d^4) - (a^10 + 5*a^8*b^2 + 10*a^6*b^4 + 10*a^4*b^
6 + 5*a^2*b^8 + b^10)*d^4*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*sqrt((a^4*b^2 + 2*a^2*b^4 + b^6)/d^4)
- (a^13 + 6*a^11*b^2 + 15*a^9*b^4 + 20*a^7*b^6 + 15*a^5*b^8 + 6*a^3*b^10 + a*b^12)*d^2*sqrt((a^4*b^2 + 2*a^2*b
^4 + b^6)/d^4))/(a^14*b^2 + 7*a^12*b^4 + 21*a^10*b^6 + 35*a^8*b^8 + 35*a^6*b^10 + 21*a^4*b^12 + 7*a^2*b^14 + b
^16)) + sqrt(2)*((a^3 + a*b^2)*d^3*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4) - (a^6 + 3*a^4*b^2 + 3*a^2*b^
4 + b^6)*d)*sqrt((a^4 + 2*a^2*b^2 + b^4 + a*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4))/(a^2*b^2 + b^4)
)*((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)^(1/4)*log((sqrt(2)*(a^6*b^3 + 3*a^4*b^5 + 3*a^2*b^7 + b^9)*d*sqrt(
(a^4 + 2*a^2*b^2 + b^4 + a*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4))/(a^2*b^2 + b^4))*sqrt((a*cos(d*x
 + c) + b*sin(d*x + c))/cos(d*x + c))*((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)^(1/4)*cos(d*x + c) + (a^6*b^2
+ 3*a^4*b^4 + 3*a^2*b^6 + b^8)*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*cos(d*x + c) + (a^9*b^2 + 4*a
^7*b^4 + 6*a^5*b^6 + 4*a^3*b^8 + a*b^10)*cos(d*x + c) + (a^8*b^3 + 4*a^6*b^5 + 6*a^4*b^7 + 4*a^2*b^9 + b^11)*s
in(d*x + c))/cos(d*x + c)) - sqrt(2)*((a^3 + a*b^2)*d^3*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4) - (a^6 +
 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d)*sqrt((a^4 + 2*a^2*b^2 + b^4 + a*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/
d^4))/(a^2*b^2 + b^4))*((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)^(1/4)*log(-(sqrt(2)*(a^6*b^3 + 3*a^4*b^5 + 3*
a^2*b^7 + b^9)*d*sqrt((a^4 + 2*a^2*b^2 + b^4 + a*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4))/(a^2*b^2 +
 b^4))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)^(1/4)*co
s(d*x + c) - (a^6*b^2 + 3*a^4*b^4 + 3*a^2*b^6 + b^8)*d^2*sqrt((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)/d^4)*cos(d*x
 + c) - (a^9*b^2 + 4*a^7*b^4 + 6*a^5*b^6 + 4*a^3*b^8 + a*b^10)*cos(d*x + c) - (a^8*b^3 + 4*a^6*b^5 + 6*a^4*b^7
 + 4*a^2*b^9 + b^11)*sin(d*x + c))/cos(d*x + c)) + 8*(a^6*b + 3*a^4*b^3 + 3*a^2*b^5 + b^7)*sqrt((a*cos(d*x + c
) + b*sin(d*x + c))/cos(d*x + c)))/((a^6 + 3*a^4*b^2 + 3*a^2*b^4 + b^6)*d)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a+b*tan(d*x+c))*(a+b*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [B]  time = 0.30, size = 2285, normalized size = 5.41 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-a+b*tan(d*x+c))*(a+b*tan(d*x+c))^(1/2),x)

[Out]

1/2/d*b/(a^2+b^2)^(3/2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2)
)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^3-1/d*b^3/(a^2+b^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)
^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))-1/4/d*b^3/(a^2+b^2)*ln(b*tan(d*x+c)
+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+1/d*b^3
/(a^2+b^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))
/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))+1/4/d*b^3/(a^2+b^2)*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*
tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2/d*b^5/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1
/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))+2/d*b^5/(a^
2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*
(a^2+b^2)^(1/2)-2*a)^(1/2))+1/d/b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a
)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^6+4/d*b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-
2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^4+
5/d*b^3/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))
^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2+1/4/d/b/(a^2+b^2)^(3/2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2
*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^5+2*b*(a+b*tan(d*x+c))^(1/2)/d+1/
2/d*b/(a^2+b^2)*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^
2+b^2)^(1/2)+2*a)^(1/2)*a^2-5/d*b^3/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(
1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^2+1/4/d/b/(a^2+b^2)*ln((a+b*tan(d*x+c))^(
1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^4-1/4/d/b/(
a^2+b^2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^
(1/2)+2*a)^(1/2)*a^4-1/2/d*b/(a^2+b^2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+
(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^2-1/4/d/b/(a^2+b^2)^(3/2)*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b
^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a^5-1/2/d*b/(a^2+b^2)^(3/2)
*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*
a)^(1/2)*a^3-1/4/d*b^3/(a^2+b^2)^(3/2)*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-
(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a-1/d/b/(a^2+b^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((
2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^4-2/d*b/(a^2+b^2)^(1/2
)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(
1/2)-2*a)^(1/2))*a^2+1/4/d*b^3/(a^2+b^2)^(3/2)*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a
)^(1/2)+(a^2+b^2)^(1/2))*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a+1/d/b/(a^2+b^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*a
rctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^4+2/d*b/(a^2+b
^2)^(1/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^
2+b^2)^(1/2)-2*a)^(1/2))*a^2-1/d/b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1
/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^6-4/d*b/(a^2+b^2)^(3/2)/(2*(a^2+b^2)^(1/2)
-2*a)^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))*a^4

________________________________________________________________________________________

maxima [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: ValueError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a+b*tan(d*x+c))*(a+b*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(b-a>0)', see `assume?` for mor
e details)Is b-a positive, negative or zero?

________________________________________________________________________________________

mupad [B]  time = 9.02, size = 581, normalized size = 1.38 \[ \mathrm {atanh}\left (\frac {d^3\,\left (\frac {16\,\left (a^2\,b^4-a^4\,b^2\right )\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}}{d^2}+\frac {16\,a\,b^2\,\left (a^3+1{}\mathrm {i}\,b\,a^2\right )\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}}{d^2}\right )\,\sqrt {-\frac {a^3+1{}\mathrm {i}\,b\,a^2}{d^2}}}{16\,\left (a^5\,b^3+a^3\,b^5\right )}\right )\,\sqrt {-\frac {a^3+1{}\mathrm {i}\,b\,a^2}{d^2}}+\mathrm {atanh}\left (\frac {d^3\,\sqrt {\frac {-a^3+a^2\,b\,1{}\mathrm {i}}{d^2}}\,\left (\frac {16\,\left (a^2\,b^4-a^4\,b^2\right )\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}}{d^2}-\frac {16\,a\,b^2\,\left (-a^3+a^2\,b\,1{}\mathrm {i}\right )\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}}{d^2}\right )}{16\,\left (a^5\,b^3+a^3\,b^5\right )}\right )\,\sqrt {\frac {-a^3+a^2\,b\,1{}\mathrm {i}}{d^2}}+\frac {2\,b\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}}{d}-\mathrm {atan}\left (\frac {b^6\,\sqrt {\frac {a\,b^2}{4\,d^2}-\frac {b^3\,1{}\mathrm {i}}{4\,d^2}}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}\,32{}\mathrm {i}}{\frac {b^8\,16{}\mathrm {i}}{d}+\frac {a^2\,b^6\,16{}\mathrm {i}}{d}}+\frac {32\,a\,b^5\,\sqrt {\frac {a\,b^2}{4\,d^2}-\frac {b^3\,1{}\mathrm {i}}{4\,d^2}}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}}{\frac {b^8\,16{}\mathrm {i}}{d}+\frac {a^2\,b^6\,16{}\mathrm {i}}{d}}\right )\,\sqrt {\frac {a\,b^2-b^3\,1{}\mathrm {i}}{4\,d^2}}\,2{}\mathrm {i}+\mathrm {atan}\left (\frac {b^6\,\sqrt {\frac {a\,b^2}{4\,d^2}+\frac {b^3\,1{}\mathrm {i}}{4\,d^2}}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}\,32{}\mathrm {i}}{\frac {b^8\,16{}\mathrm {i}}{d}+\frac {a^2\,b^6\,16{}\mathrm {i}}{d}}-\frac {32\,a\,b^5\,\sqrt {\frac {a\,b^2}{4\,d^2}+\frac {b^3\,1{}\mathrm {i}}{4\,d^2}}\,\sqrt {a+b\,\mathrm {tan}\left (c+d\,x\right )}}{\frac {b^8\,16{}\mathrm {i}}{d}+\frac {a^2\,b^6\,16{}\mathrm {i}}{d}}\right )\,\sqrt {\frac {b^3\,1{}\mathrm {i}+a\,b^2}{4\,d^2}}\,2{}\mathrm {i} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(a + b*tan(c + d*x))^(1/2)*(a - b*tan(c + d*x)),x)

[Out]

atan((b^6*((b^3*1i)/(4*d^2) + (a*b^2)/(4*d^2))^(1/2)*(a + b*tan(c + d*x))^(1/2)*32i)/((b^8*16i)/d + (a^2*b^6*1
6i)/d) - (32*a*b^5*((b^3*1i)/(4*d^2) + (a*b^2)/(4*d^2))^(1/2)*(a + b*tan(c + d*x))^(1/2))/((b^8*16i)/d + (a^2*
b^6*16i)/d))*((a*b^2 + b^3*1i)/(4*d^2))^(1/2)*2i - atan((b^6*((a*b^2)/(4*d^2) - (b^3*1i)/(4*d^2))^(1/2)*(a + b
*tan(c + d*x))^(1/2)*32i)/((b^8*16i)/d + (a^2*b^6*16i)/d) + (32*a*b^5*((a*b^2)/(4*d^2) - (b^3*1i)/(4*d^2))^(1/
2)*(a + b*tan(c + d*x))^(1/2))/((b^8*16i)/d + (a^2*b^6*16i)/d))*((a*b^2 - b^3*1i)/(4*d^2))^(1/2)*2i + atanh((d
^3*((16*(a^2*b^4 - a^4*b^2)*(a + b*tan(c + d*x))^(1/2))/d^2 + (16*a*b^2*(a^2*b*1i + a^3)*(a + b*tan(c + d*x))^
(1/2))/d^2)*(-(a^2*b*1i + a^3)/d^2)^(1/2))/(16*(a^3*b^5 + a^5*b^3)))*(-(a^2*b*1i + a^3)/d^2)^(1/2) + atanh((d^
3*((a^2*b*1i - a^3)/d^2)^(1/2)*((16*(a^2*b^4 - a^4*b^2)*(a + b*tan(c + d*x))^(1/2))/d^2 - (16*a*b^2*(a^2*b*1i
- a^3)*(a + b*tan(c + d*x))^(1/2))/d^2))/(16*(a^3*b^5 + a^5*b^3)))*((a^2*b*1i - a^3)/d^2)^(1/2) + (2*b*(a + b*
tan(c + d*x))^(1/2))/d

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ - \int a \sqrt {a + b \tan {\left (c + d x \right )}}\, dx - \int \left (- b \sqrt {a + b \tan {\left (c + d x \right )}} \tan {\left (c + d x \right )}\right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-a+b*tan(d*x+c))*(a+b*tan(d*x+c))**(1/2),x)

[Out]

-Integral(a*sqrt(a + b*tan(c + d*x)), x) - Integral(-b*sqrt(a + b*tan(c + d*x))*tan(c + d*x), x)

________________________________________________________________________________________